Solution to drawdown problem

Radius of influence (R) for a well may be calculated using the following equation:

$$
\mathrm{R}=\mathrm{b}^{*}\left(\mathrm{SQRT}\left(\mathrm{~K} /\left(2^{*} \mathrm{~N}\right)\right)\right)
$$

where b is the thickness $(100 \mathrm{~m}), \mathrm{K}$ is hydraulic conductivity ($1 \mathrm{e}-5 \mathrm{~m} / \mathrm{sec}$), and N is the recharge ($0.75 \mathrm{~m} / \mathrm{yr}$ or $2.378 \mathrm{e}-8 \mathrm{~m} / \mathrm{sec}$).

$$
\mathrm{R}=100 *(\mathrm{SQRT}(1 \mathrm{e}-5 /(2 * 2.378 \mathrm{e}-8)))=1450 \mathrm{~m}
$$

The drawdown at 5 m may be calculated using the following equation:

$$
\mathrm{s}_{2}-\mathrm{s}_{1}=\left(\mathrm{Q} /\left(2 \pi^{*} \mathrm{~K} * \mathrm{~b}\right)\right) * \ln \left(\mathrm{r}_{1} / \mathrm{r}_{2}\right)
$$

Since we know that at the radius of influence for the well (R) drawdown is zero, the equation becomes

$$
\mathrm{s}_{2}=\left(\mathrm{Q} /\left(2 \pi^{*} \mathrm{~K} * \mathrm{~b}\right)\right) * \ln \left(\mathrm{R} / \mathrm{r}_{2}\right)
$$

where Q is flow rate $\left(1 \mathrm{~m}^{3} /\right.$ minute or $\left.0.0167 \mathrm{~m}^{3} / \mathrm{sec}\right)$, K is hydraulic conductivity ($1 \mathrm{e}-5$ $\mathrm{m} / \mathrm{sec}$), b is the thickness $(100 \mathrm{~m}), R$ is radius of influence $(1450 \mathrm{~m})$, and r_{2} is 5 m .

$$
\mathrm{s}_{2}=(0.0167 /(2 * 3.1416 * 1 \mathrm{e}-5 * 100)) * \ln (1450 / 5)=15 \mathrm{~m}
$$

